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bstract

Solid oxide fuel cell (SOFC) is a kind of nonlinear, multi-input–multi-output (MIMO) system that is hard to model by the traditional method-
logies. For the purpose of dynamic simulation and control, this paper reports a dynamic modeling study of SOFC stack using a Hammerstein
odel. The static nonlinear part of the Hammerstein model is modeled by a radial basis function neural network (RBFNN), and the linear part

s modeled by an autoregressive with exogenous input (ARX) model. To estimate the hidden centers, the radial basis function widths and the
onnection weights of the RBFNN, a new gradient descent algorithm is derived in the study. On the other hand, the least squares (LS) algorithm
nd Akaike Information Criteria (AIC) are used to estimate the parameters and the orders of the ARX model, respectively. The applicability of the
roposed Hammerstein model in modeling the nonlinear dynamic properties of the SOFC is illustrated by the simulation. At the same time, the

xperimental comparisons between the Hammerstein model and the RBFNN model are provided which show a substantially better performance
or the Hammerstein model. Furthermore, based on this Hammerstein model, some control schemes such as predictive control, robust control can
e developed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Fuel cell (FC) is considered one of the most important dis-
ributed resources due to its modularity, high efficiency and low
nvironmental pollution. The solid oxide fuel cell (SOFC), in
articular, can achieve efficiency at least 50% [1]. It presents an
ttractive option for the distributed generation (DG) technology,
hich generates electricity at or near the load site.
It is well known that SOFC systems are sealed, and work in

high-temperature (600–1000 ◦C) environment. As a kind of
onlinear multi-input–multi-output (MIMO) system, SOFC is
ard to model by the traditional methodologies. Although there

ave been many investigations into all aspects of mathematical
odeling of the SOFC, most of them are concerned with static

erformance [2–4]. The SOFC, however, is a dynamic device
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ion neural network (RBFNN); Autoregressive with exogenous input (ARX);

hich will affect the dynamic behavior of the power system
o which it is connected. Analysis of such a behavior requires
n accurate dynamic model. In the last several decades, fruitful
esults on modeling the nonlinear dynamics of the SOFC have
een proposed [5–8]. However, most of these models empha-
ized the detailed description of cell internal processes, such as
omponent material balance, energy balance and electrochem-
cal kinetics, etc. These models are very useful for analyzing
he transient characteristics of the SOFC, but they are too com-
licated to be used in a control system design. To develop
ffective control strategies, an autoregressive with exogenous
nput (ARX) identification model for a SOFC has been presented
n Ref. [9]. However, the performance of this model may be poor
ue to the highly nonlinear behavior of the system. Therefore, a
ew nonlinear modeling approach is needed to provide a better

olution. In this work, a Hammerstein model, consisting of a
adial basis function neural network (RBFNN) in cascade with
n ARX model, is adopted to describe the nonlinear dynamic
roperties of the SOFC.

mailto:huohb1028@sjtu.edu.cn
dx.doi.org/10.1016/j.jpowsour.2007.09.059
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Nomenclature

E0 ideal standard potential (V)
E open-circuit reversible potential (V)
F Faraday’s constant (96487 C mol−1)
IFC stack current (A)
Ki valve molar constants for hydrogen, oxygen and

water (mol s−1 atm−1)
Kr constant with the value of N0/4F (mol s−1 A−1)
Nout

H2
hydrogen output flow rate (mol s−1)

N in
H2

hydrogen input flow rate (mol s−1)

Nr
H2

hydrogen reacted flow rate (mol s−1)

N in
O2

oxygen input flow rate (mol s−1)

Nf natural gas input flow (mol s−1)
N0 number of cells in the stack
pi partial pressures of hydrogen, oxygen, and water

(atm)
R gas constant (8.31 J mol−1 K−1)
r ohmic loss (�)
rH O ratio of hydrogen to oxygen
T stack operating temperature (K)
u fuel utilization
us desired utilization in steady-state
Vdc stack output voltage (V)

Greek letter
τf fuel processor response time (s)
τi response times for the flow of hydrogen, oxygen

and water (s)
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hydrogen and oxygen is 2 to 1. Oxygen excess is always taken
in to let hydrogen react with oxygen more completely. So, the
flow ratio of hydrogen to oxygen is kept at 1.145 in this paper
[18].
η learning rate

The Hammerstein model consists of a static nonlinear part
ollowed in series by a dynamic linear part. It is a type of com-
only used nonlinear model, and has been successfully used to
odel a class of nonlinear systems [10–13]. The identification

f the Hammerstein system involves estimating both the non-
inear and the linear parts from the input–output observations.
n Ref. [14], Jurado has presented a Hammerstein model for
OFC, in which the base functions were used for the represen-

ation of the linear and nonlinear blocks in the Hammerstein
odel. But this kind of identification method needs prior infor-
ation of the system [15]. To overcome the aforementioned

eficiencies, Narendra and Parthasarathy [16] have pointed out
hat a neural network could be used as the nonlinear operator in a
ammerstein model. Due to a number of advantages of RBFNNs

ompared with other types of artificial neural networks (ANNs),
uch as better approximation properties, simpler network struc-
ures and faster learning algorithms [17], a Hammerstein model
f the SOFC is presented in this study, in which the nonlinear
tatic part is approximated by a RBFNN and the linear dynamic
art is modeled by an ARX model.
In addition, one of the most important cell performance
ariables, fuel utilization, has not been examined in Ref. [14]
hen they explored the SOFC dynamic response after the dis-
Sources 175 (2008) 441–446

urbances. Furthermore, they have not included the SOFC fuel
rocessor in their investigation. So in this paper, the fuel proces-
or is included and the operating issue about the fuel utilization
s considered specifically.

The rest of this paper is organized as follows. In Sec-
ion 2, the SOFC dynamic model proposed in Refs. [8,18,19]
s briefly reviewed. The identification structure and identi-
cation algorithms of the Hammerstein model are given in
ection 3. In Section 4, the detailed identification process of the
ammerstein model for the SOFC is described and some sim-
lation results are given. Finally, conclusions are presented in
ection 5.

. Theory for the SOFC dynamic model

Based on the work reported in Refs. [8,18,19], the SOFC
ynamic model is briefly reviewed in this section. The SOFC
ynamic model including the fuel processor adopted in this
aper is shown in Fig. 1 [18].

.1. The balance of plant (BOP)

The BOP consists of the natural gas fuel storage, fuel valve
ontrolled by its controller, and the fuel processor that reforms
he natural gas input Nf to the hydrogen-rich fuelN in

H2
. In Ref. [8],

he authors introduced a simple model of a fuel processor that
onverts fuels such as natural gas to hydrogen and byproduct
ases. The model is a first-order transfer function with time
onstant τf. Hence, the fuel processor is represented simply by
his first-order model.

Although CO can be a fuel in a SOFC, we suppose all CO
ill take part in the CO-shift reaction if the gas contains water

8]. Thus, the overall cell reaction of the SOFC is:

2 + 1
2 O2 → H2O (1)

rom Eq. (1), it is seen that the stoichiometric ratio between
Fig. 1. SOFC dynamic model.



ower Sources 175 (2008) 441–446 443

2

o
i
t

v
e
t
[

V

E

w

p

p

p

2

a

u

w
t
0
p
u
c

t
u
S
r
t
b

N

w
b
s
c
d

�

3

3

a
s
{
f
A
t
i
o
r
s
a

y

w
o
o

s

x

w

φ

i
a
r
n

3.2. Identification of the Hammerstein model

The identification of the Hammerstein model involves esti-
mating the hidden centers, the radial basis function widths and
the connection weights of the RBFNN and the orders and param-
H.-B. Huo et al. / Journal of P

.2. Solid oxide fuel cell

The SOFC consists of hundreds of cells connected in series
r in parallel. By regulating the fuel valve, the amount of fuel
nto the SOFC stack can be adjusted, and the output voltage of
he SOFC can be controlled.

The Nernst’s equation and Ohm’s law determine the average
oltage magnitude of the fuel cell stack. So, applying Nernst’s
quation and Ohm’s law (taking into account ohmic losses),
he output voltage of the SOFC can be modeled as follows
5,8,18,19]:

dc = E − rIFC (2)

= N0E0 + N0RT

2F
ln

pH2p
0.5
O2

pH2O
(3)

here

H2 = 1/KH2

1 + τH2s
(N in

H2
− 2KrIFC) (4)

O2 = 1/KO2

1 + τO2s
(N in

O2
− KrIFC) (5)

H2O = 1/KH2O

1 + τH2Os
2KrIFC (6)

.3. Fuel utilization

Fuel utilization is one of the most important operating vari-
bles that may affect the performance of FC. It is defined as:

= N in
H2

− Nout
H2

N in
H2

= Nr
H2

N in
H2

= N0IFC

2FN in
H2

(7)

here Nr
H2

is the hydrogen reacted flow rate. For protecting
he SOFC stack, the desired range of fuel utilization is from
.7 to 0.9. An overused-fuel condition (u > 0.9) could lead to
ermanent damage to the cells due to fuel starvation whereas an
nderused-fuel condition (u < 0.7) results in a rapid rise of the
ell voltage [20].

To protect the SOFC stack and expect small deviations in the
erminal voltage due to changes in stack current, we will hold the
tilization as constant. According to Eq. (7), the operation of the
OFC stack with a fuel input proportional to the stack current
esults in a constant utilization factor in the steady-state. Thus,
he SOFC stack is operated with constant steady-state utilization
y controlling the natural gas input flow to the stack as [19]:

f = N0IFC

2Fus
(8)

here us is the desired utilization in steady-state. Furthermore,
ecause the fuel processor is specially considered, the relation-
hip between a small change of stack current �IFC and a small
hange of hydrogen input �N in fed to the SOFC stack can be
H2
erived as [19]:

N in
H2

= N0

2Fus(1 + τfs)
�IFC (9)

e
a
t
o

Fig. 2. Hammerstein model.

. Hammerstein model

.1. Problem statement

In this section, we will consider the problem of estimating
model for a single-input–single-output (SISO) Hammerstein

ystem based on the input–output data, i.e., {ui}i = 1, . . ., n and
yi}i = 1, . . ., n. The Hammerstein model consists of a RBFNN
or identification of the static nonlinear part, in series with an
RX model for identification of the linear part. The struc-

ure of the Hammerstein model adopted in this paper is
llustrated in Fig. 2, where u(k) and y(k) are the input and
utput of the Hammerstein model at the kth sampling instant,
espectively, and x(k) is the output of RBFNN which is unmea-
urable. The output of the Hammerstein model can be expressed
s:

(k) = −
na∑
i=1

aiy(k − i) +
nb∑

j=0

bjx(k − j) (10)

here ai(i = 1, . . ., na) and bj(j = 0, . . ., nb) are the parameters
f the ARX model, na and nb are integers related to the model
rder and the function.

The static nonlinear part in the Hammerstein model is repre-
ented by using the RBFNN depicted in Fig. 3 as:

(k) =
M∑
i=1

wiφi(u(k)) (11)

here

i(u(k)) = exp

(
−||u(k) − ci||2

2d2
i

)
(12)

s the Gaussian function. M is the number of hidden node, ci

nd di are the centers and widths of the ith RBF hidden unit,
espectively. wi is the connection weight from the ith hidden
ode to the output, ||·|| denotes the Euclidean norm.
ters of the ARX model. The objective is to develop training
lgorithms by which we can adjust the above parameters so
hat the application of a set of inputs produces a desired set of
utputs.
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Fig. 3. RBF neural network.

.2.1. Identification of the RBFNN
For a neural network, gradient-based learning algorithm is

ommonly used in network training. In this research, a new gra-
ient descent algorithm is derived to update the hidden centers,
he radial basis function widths and the connection weights of
he RBFNN in the Hammerstein model.

In order to adjust the hidden centers, the radial basis func-
ion widths and the connection weights of the RBFNN by using
radient-based learning algorithm, a problem arises in deter-
ining a measure of the error at the output of the RBFNN. One

nows the desired output (y(k)) of the Hammerstein model, but
he desired output (x(k)) for the RBFNN is unknown in advance.
ntuitively, the error at the output of the RBFNN must be related
o the error at the output of the ARX model [21]. This idea is used
o derive the updating laws for the connection weights, the hid-
en centers and the radial basis function widths of the RBFNN
y defining the following error at the output of the ARX model:

(k) = 1
2 (yd(k) − y(k))2 (13)

here yd(k) is the desired output of the system. Combining Eqs.
10), (11) and (13), one gets

(k) = 1

2
(yd(k) + a1y(k − 1) + · · · + anay(k − na)

− b0x(k) − · · · − bnb
x(k − nb))2

= 1
(yd(k) + a1y(k − 1) + · · · + an y(k − na)
2 a

− b0

(
M∑
i=1

wiφi(u(k))

)
− · · · − bnb

x(k − nb))2 (14)

e

θ

Sources 175 (2008) 441–446

To minimize the error E(k), the connection weights wi, the
idden centers ci and the radial basis function widths di should be
pdated in the negative direction of the gradient of E(k), �E(k).
hus, the updating laws of wi, ci and di are derived as follows:

wi(k) = −η
∂E(k)

∂wi(k)
= b0η(yd(k) − y(k))φi(u(k)) (15)

i(k + 1) = wi(k) + b0η(yd(k) − y(k))φi(u(k)) (16)

ci(k) = −η
∂E(k)

∂ci(k)

= b0ηwi(k)(yd(k) − y(k))φi(u(k))
u(k) − ci(k)

(di(k))2 (17)

i(k + 1) = ci(k) + b0ηwi(k)(yd(k)

− y(k))φi(u(k))
u(k) − ci(k)

(di(k))2 (18)

di(k) = −η
∂E(k)

∂di(k)
= b0ηwi(k)(yd(k)

− y(k))φi(u(k))
||u(k) − ci(k)||2

(di(k))3 (19)

i(k + 1) = di(k) + b0ηwi(k)(yd(k)

− y(k))φi(u(k))
||u(k) − ci(k)||2

(di(k))3 (20)

here η is the learning rate.

.2.2. Identification of the ARX model
An important step, which precedes the parameter estimation

f the ARX model, is to determine the model structure which is
ntirely defined by the integers na and nb. Many statistical model
election criteria have been developed. One popular criterion is
he Akaike Information Criterion (AIC) [22]. So in this study,
he best orders of the ARX model are determined by minimizing
IC, which is defined as:

IC = −N log(E) + 2(na + nb) (21)

= 1

N

N∑
k=1

(y(k) − ŷ(k))2 (22)

here ŷ(k) is the estimated output at time step “k” of the ARX
odel, N is the number of sample points, E is the mean square

rror between actual output and estimated output of the ARX
odel.

In the sequel, the least squares (LS) algorithm is adopted to

stimate the parameters of the ARX model, i.e.,

ˆ = [HTH]
−1

HTY (23)
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Table 1
SOFC operating point data

Item Value

N0 384
T 1273 K
IFC, rate 300 A
us 0.8
E0 1.18 V
KH2 0.843 mol s−1 atm−1

KO2 2.52 mol s−1 atm−1

KH2O 0.281 mol s−1 atm−1

τH2 26.1 s
τO2 2.91 s
τH2O 78.3 s
τ 5 s
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indicates that the proposed Hammerstein modeling method is
applicable to describe the nonlinear dynamic behaviors of the
SOFC.
f

0.126 �

H O 1.145

here θ̂ = [â1, â2, . . . , âna , b̂0, b̂1, . . . , b̂nb
]
T

is the estimated
arameters of the ARX model and

= [h(1), h(2), . . . , h(N)]T
N×(na+nb+1) (24)

= [y(1), y(2), . . . , y(N)]T
N×1 (25)

(k) = [−y(k − 1), −y(k − 2), . . . ,−y(k − na),

(k), (k − 1), . . . , (k − nb)]T
(na+nb+1)×1 (26)

. Results and discussion

The main aim of this paper is to construct a dynamic model for
he output voltage Vdc of the SOFC, as a function of the natural
as input flow to the stack Nf. For the purpose of identification,
he white-box model described in Section 2 is used to generate
he modeling data. In the following condition, it is assumed
hat the load resistor has the following variation. The SOFC
s operating at its rated operation point initially. The nominal
perating conditions of the SOFC are given in Table 1 [8,18]. At
= 150 s, a load disturbance causes the stack current to have a
tep change (from 300 to 270 A). In this situation, the variation
f the natural gas input flow to the stack is depicted in Fig. 4.
n order to establish the Hammerstein model, a record of 600
xperimental samples of the output voltage is collected due to
his change of the natural gas input flow.

Based on these data, we firstly determine the structure of the
RX model in the Hammerstein model. To determine the orders
f the ARX model, the sampled input–output data are used to
dentify a linear ARX model for the SOFC [14]. By minimiz-
ng AIC, the structure of the ARX model can be determined as
ollows:

dc(k) = −a1Vdc(k − 1) − a2Vdc(k − 2) − a3Vdc(k − 3)

−a4Vdc(k − 4) − a5Vdc(k − 5) − a6Vdc(k − 6)
−a7Vdc(k − 7) − a8Vdc(k − 8) − a9Vdc(k − 9)

+b0x(k) + b1x(k − 1) + b2x(k − 2) + b3x(k − 3)

+b4x(k − 4) + b5x(k − 5) + b6x(k − 6) (27)
ig. 4. Variation of the natural gas input flow due to step change of current from
00 to 270 A.

hus, the structure of the Hammerstein model selected in this
aper will consist of a RBFNN with six RBF neurons in the
idden layer as shown in Fig. 3, and an ARX model with the
tructure as shown in Eq. (27).

Secondly, the connection weights wi, the hidden centers ci

nd the radial basis function widths di of the RBFNN are initial-
zed with small random values. Thus, one can convert the natural
as input flow, Nf(k), into the intermediate variable, x(k), using
q. (11). After selecting the learning rate η = 0.004, the LS algo-

ithm (i.e., Eq. (23)) and the derived gradient descent learning
lgorithm (i.e., Eqs. (15–20)) are used to adjust the parameters
f the ARX model and the RBFNN, respectively. As a result,
he actual output voltage of the SOFC and the identified output
oltage of the Hammerstein model are shown in Fig. 5. Fig. 5
Fig. 5. Output voltage of the actual and identified Hammerstein models.
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Fig. 6. Output voltage of the actual and identified RBFNN models.

For the purpose of comparison, the same input–output data
re used to identify a RBFNN model, which performs at the
ame structure and initial values of the RBFNN parameters as
n the Hammerstein model. In this study, the traditional gradi-
nt descent algorithm is used to adjust the RBFNN parameters.
inally, the actual output voltage of the SOFC and the estimated
utput voltage of the RBFNN model are depicted in Fig. 6. Com-
aring the identification results in Figs. 5 and 6, one will notice
hat the Hammerstein model yields higher modeling accuracy.
hese indicate the Hammerstein model is a powerful tool for
escribing the nonlinear dynamic properties of the SOFC and
he Hammerstein model presented is accurate and valid.

. Conclusions

To develop control schemes, a nonlinear modeling study of
he SOFC using a Hammerstein model is reported in this paper.
he Hammerstein model consists of a RBFNN in series with
n ARX model. To estimate the connection weights, the hidden
enters and the radial basis function widths of the RBFNN, a
ew gradient descent algorithm is derived. On the other hand,
he AIC and the standard LS algorithm are used to determine

he orders and the parameters of the ARX model, respectively.

Besides, the performance of our proposed Hammerstein
odel has been tested and compared with the RBFNN model.
imulation results show that the Hammerstein model yields

[

[
[

Sources 175 (2008) 441–446

igher modeling accuracy. These indicate that it is feasible to
stablish the Hammerstein model for describing the nonlinear
ynamic properties of the SOFC, and the Hammerstein model
resented in this paper is accurate and valid. In the future, based
n this Hammerstein model, some control schemes such as pre-
ictive control and robust control can be developed.
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